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ABSTRACT 
We have developed a technique that allows SIM to measure relative stellar positions with an accuracy of 1 micro-arcsecond 
at any time during its 5-yr mission. Unlike SIM's standard narrow-angle approach, Gridless Narrow Angle Astrometry 
(GNAA) does not rely on the global reference frame of grid stars that reaches full accuracy after 5 years. GNAA is simply 
the application of traditional single-telescope narrow angle techniques to SIM's narrow angle optical path delay measure- 
ments. In GNAA, a set of reference stars and a target star are observed at several baseline orientations. A linearized model 
uses delay measurements to solve for star positions and baseline orientations. A conformal transformation maps observa- 
tions at different epochs to a common reference frame. The technique works on short period signals (P=days to months), 
allowing it to be applied to many of the known extra-solar planets, intriguing radio/X- ray binaries, and other periodic 
sources. The technique's accuracy is limited in the long-term by false acceleration due to a combination of reference star 
and target star proper motion. The science capability 1 micro-arcsecond astrometric precision - is unique to SIM. 
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1. INTRODUCTION 
The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars 
other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. There 
is no doubt that with the successful conclusion of the SIM mission, the Universe will contain many newly discovered 
planets and many breakthroughs in our understanding of complex astrophysical processes. 

SIM achieves its high precision in the so-called "narrow-angle" regime. This is defined by a small (1") diameter field 
in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in 
two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid 
allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically 
observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude 
and length of the baseline. 

The narrow angle process demands patience. It is not until five years after launch that the SIM data can be reduced to 
yield the ultimate accuracy. The accuracy is best at mid-mission, and a factor of 2 worse at the beginning and end of the 
mission.' 

This manuscript describes a process for obtaining high-precision narrow-angle measurement with SIM at any epoch. 
We show through analysis and simulations that SIM can obtain uas accuracy and can detect extra-solar planets with a few 
days of observation, and without relying on a high-precision grid of reference stars. The process can be applied as early 
as during the first six months of in-orbit calibration (IOC). We call this technique Gridless Narrow Angle Astrometry, or 
GNAA. 

The motivations are two-fold. First, and obviously, it is an insurance policy against a catastrophic mid- mission failure. 
Second, early results and a technique that can duplicate those results throughout the mission will give the mission analysts 
important experience in the proper use and calibration of SIM. 



2. GRIDLESS NARROW ANGLE ASTROMETRY (GNAA) 
2.1. SIM’s Baseline Approach 
The process of performing narrow angle astrometry with SIM is in principle straightforward: SIM derives the baseline 
orientation, length, and delay constant by observing stars whose positions are know to a few microarcsec (uas). These are 
referred to as “grid stars” as they are part of the high-precision all-sky grid that is the basis for SIM’s narrow-angle and 
wide-angle astrometry (reference: Swartz). It then observes the target and nearby reference stars, ultimately computing 
the position of the target relative to the reference stars along the direction of the baseline. The baseline is then rotated 
(nominally withm a few days) and the stars are re-observed to measure the position on the orthogonal axis. 

Narrow angle accuracy is limited by the number of grid stars and the accuracy of their measured positions. Grid stars 
are spread over a 15-degree diameter “tile” while the target and reference are confined to a 1- degree field near the center 
of the tile. To first order, for a given grid-star angular error e, the narrow angle error is el1.5, but this is subject to the 
intermediate step of baseline determination. Simulations show that on average 6 grid stars are required per tile if grid star 
errors of 4 uas r.m.s. are to contribute < 0.3 uas r.m.s. to the narrow angle solution. 

The narrow angle measurement process does not achieve its full accuracy until the end of the mission because grid star 
positions, proper motions, and parallaxes are not known to their potential accuracy until then. A first grid star campaign 
is planned during the initial 6-month in-orbit checkout (IOC), but it will be = 1 year before an accurate parallax (= 15 
uas) is determined over a significant fraction of the sky. Thus the SIM science teams do not plan to report accurate narrow 
angle results in a timely fashion, even for known short-period systems. The baseline narrow angle technique relies on the 
grid star campaign, evolving in accuracy over the 5-year mission life. 

2.2. Efficiency 
Narrow angle measurements are scheduled in an efficient manner to take advantage of grid star observations and other 
objects of interest within a tile. The narrow angle measurements are chopped into 1-minute long observations (30 seconds 
of integration, 30 seconds of slew and acquisition) with 10 observations per star per hour. Observation of a target and 
2 reference stars would then require 30 minutes per hour. Observation of 6 grid stars before and after the narrow angle 
measurements would use another 12 minutes. In theory a full 2-d measurement could be completed in about 1.5 hr. 

Compared to the technique proposed below, the SIM narrow angle paradigm is more efficient. The new approach 
requires narrow angle observation of 4 reference and 1 target star, requiring the full hour (ten 1- minute long observations 
of 6 objects) to complete a cycle. Further, the new technique requires a minimum of 3 baseline pointings to make one 
2-d measurement. After 3 hours, a narrow angle measurement is made on one interesting target. Thus the efficiency is 
reduced by a factor of 2, depending on how the grid stars are bookkept. The advantage of course is that the measurement 
is good to 1 uas after just 3 hours whereas the standard SIM approach requires >2 yr to make this claim. 

2.3. A New Technique: GNAA 
Narrow angle astrometry is nothing more than relative-angle astrometry; one measures the position of a target star with 
respect to a set of reference stars. In traditional narrow angle astrometry, a photographic plate or charge-coupled detector 
(CCD) stares at a field in successive observations. The field’s reference stars are used to anchor a least-squares conformal 
transformation that matches the scale, rotation, translation, and potentially higher order angular terms into a common 
reference frame.2 The transformation is then applied to the target star whose motion is observed relative to the reference 
frame. 

The conformal transformation absorbs several instrumental parameters that are of no consequence to relative observa- 
tional accuracy. Changes in the telescope focal length are seen as plate-scale changes while telescope pointing errors are 
simply field translations, and detector rotation results in field rotation. Because one only measures the relative positions of 
the stars, absolute scale of measured parameters is lost, but the relative accuracy is still as good as the a priori knowledge 
of the field, i.e. 100 milli-arcsec (mas) over 1 degree, or 3e-5 if the reference star catalog positions are good to 100 mas. 
The minute absolute scale error when applied to the small reflex motion of the target stars is dwarfed by other factors (e.g. 
shot and detector noise). 



GNAA with SIM is little more than the application of traditional narrow angle techniques to SIM’s narrow angle 
optical path delay measurements. The technique, described in the following paragraphs, allows one to perform micro- 
arcsecond astrometry without solving for precise values of baseline length, baseline orientation, or the metrology constant 
term. In GNAA, a set of reference stars and a target star are observed at several baseline orientations. A linearized model 
is used to solve for star positions and baseline orientations. A conformal transformation is applied to relate the reference 
and target stars to a common reference frame. 

As with narrow angle astrometry at a telescope, the conformal transformation absorbs SIM instrumental parameters. 
To first order baseline length errors cause field dilation, baseline orientation about the line-of- sight cause field rotation, 
baseline orientation errors orthogonal to the line-of-sight cause field translation and quadratic field distortion (focus and 
astigmatism), and the metrology constant term is a translation along the direction of the baseline. The conformal transfor- 
mation solves the scale, rotation, and translation of the observed reference frame without requiring the intermediate step 
of exact baseline determination. The absolute scale is lost, but it is estimated with a precision approximately given by the 
a priori scale knowledge of the field size, as described above. 

The most significant advantage of GNAA is that high-accuracy narrow-angle measurements can be made early in 
the mission. As there is no reliance on highly accurate grid star positions, the technique can be applied as soon as the 
instrument is calibrated. Thus SIM can obtain important scientific results soon after launch and throughout the early parts 
of the mission. Further, it is an ideal approach not only for early- mission science, but also for quick study and follow-up 
of compelling objects demanding immediate results. It is certain that some science will demand accurate results long 
before the 5-yr mission is concluded. 

The disadvantages of GNAA are that it is observationally inefficient, and it suffers from false acceleration determi- 
nation for long observations (a few uas over 5 years). Unlike the grid-based narrow angle technique that allows sharing 
of a tile between narrow-angle and other targets, GNAA requires 3 dedicated hours of observation to produce a uas 2-d 
measurement of the target star. At least 4 reference stars and 3 baseline orientations are needed. This technique is clearly 
not the choice for producing the bulk of narrow-angle science observations once normal operations begin. Further, GNAA 
is not the choice for observing periodic effects with periods 5 yr. The combination of arcsec/yr target star motion with 
milli-arcsec/yr reference star motion results in unobservable frame rotation that causes uas target star accelerations after 
several years. 

3. ANALYSIS 
The analysis is set up in two parts. First, we show that given a set of stars, baseline orientations and the corresponding delay 
measurements, there exists a transformation that allows one to determine the star positions from the delay measurements 
under certain conditions. We describe the null space of the solution, which consists of translation, rotation, scale, and 
quadratic displacement degrees of freedom. The relative star positions are solved modulo the null space. 

Second, we show how observations at different epochs are mapped to a common epoch through a matrix that incorpo- 
rates the aforementioned null space. Our error analysis reveals that the target star motion suffers from a long-term false 
acceleration caused by the proper motions of the target and reference stars. This was originally predicted by S h a ~ , ~  and 
our analysis confirms the predicted magnitude of the effect. 

3.1. Proof of GNAA Principal 
Let D c R2 be a subset of the open unit disc including the origin and let Y : D -+ S, where S is the unit sphere: 

Y ( u , v )  = (u ,v ,y(u,v));  y(u,v)  dl - 2 l 2 - 9  

Star positions in the field of regard are parameterized by Y, that is we write 

si = ( u i , v i J ( ~ i ~ ~ i ) ) .  

Stellar positions are estimated using linearized equations about nominal a priori positions of the stars and baseline 
vectors. Within the linear approximation, the true and a priori star positions are related as 



where 6si is a tangent vector to the sphere at sP. 

Y* maps a tangent vector in D to a tangent vector on the sphere at Y ( u , v )  = (u,  v,y(u, v ) )  via 
6s, is parameterized in the following way. Let Y * ( u , v )  denote the differential of the map Y at the point (u ,v ) .  Then 

for any tangent vector h = (hl, h2) in D. 
In the narrow field, the set of delay measurements dij are generated via 

di,=(si,b,)+c,+qji; i = l ,  ..., N ,  j = 1 ,  ..., M (5) 

where bj is the interferometer baseline vector, c,  is the interferometer constant term associated with the baseline vector, 
and q j i  is the noise in the measurement. Neither b, nor c, are known with sufficient precision, and hence they must either 
be estimated or eliminated from the set of equations to determine the science position vector. 

Writing b, = 69 + 6b,, where by is the a priori estimate of the baseline vector, (5) becomes (ignoring the noise term 
in the sequel) 

dij = (sp+6si,b:+Gbj)+~j 

= (sQ,b?) +(6s&) + (SP,6bj) + c j .  

Hence, 
dij-($,b?) = (6si,bq)+(6bj,sP)+cj, 

where the left side of the equation is known: d,, are the measurements and ($,by) is the expected delay derived from a 
priori knowledge. 

Now let II denote the projection Il(xl,x~,.q) = (x1,xz) defined for any 3-vector x = (xl,x2,x3). (Thus when rI is 
restricted to the unit sphere, n = Y-'.) Using the tangent vector description we have 

where b; denotes the third component of the vector by. To get a handle on the magnitude of the 0 term, note that the 
narrow angle scenario restricts the field to a ldeg diameter so that J u ( ,  Iv( < .01. Then if the baseline is controlled to within 
one arcmin of the u - v plane and the a priori error on the star position is on the order of 30mas, the 0 term contributes 
2.5pm of delay error. Hence, there are no operational restrictions to deleting this term and assuming the model has the 
form 

dij - ($ ,by)  = (nby ,h i )+(6bj , sP)+~j .  (12) 

and consider the decomposition of 66, as 

6b, = EJIb? + ETE(rIb?) +lib; 

(sY,6b,)+c, = E,(nb?,nsp)+ET(nb?,E*(nsp))+c,+sb:n. 

where agam 6b: denotes the thrd component of the vector Fb, Thus we may wnte 



Let p’ = u’ + v’. Then y, M 1 - p;/2, and 

x =  

Introducing the new constant c> c, + 6b;, the delay equation becomes 

hiv 
E, . 
ET 
6bL 

The unknown variables in the equation above include hi, i = 1 ,  ..., N ,  E ~ ,  ET ,  Sb;, and c>. The extemal metrology 
subsystem tracks the change in the length of the science baseline vector without interruption during the generation of the 
entire set of delays in (17). Coupling this with the operational scenario that maintains the interferometer baseline vector 
in the u - v plane, we may assume that E~ represents a single unknown. This is to be contrasted with ET, 6b5, and c> that 
we allow to change for each baseline orientation. Hence each of these terms represents an M vector. Now let X denote the 
entire vector of unknowns: 

L c J  

Then X is computed to be an 2N + 3M + 1 vector. However, we will show below that there are a total of 6 redundant 
degrees of freedom. To characterize these redundant degrees of freedom we write the system of equations (17) as 

d=AdX, (19) 

and search for the null space of Ad (written null(Ad)). We will get these vectors just by eyeballing the situation. 
By setting E,. = 0, ET = 0, 6bz = 0, hi = ( K ~ , K Z ) ,  and c> = -(IIbg,hi), we see that this vector is in the null space for 

any choice of ~ i .  For two independent choices of ~1 and K2, let u1 and u2 denote the correspondmg vectors in null(Ad). T 
A third vector in the null space is obtained by setting ET = 0, 6bz = 0, c$ = 0, hi = IIsp, and = - 1 .  Denote this vector 
as u3. A fourth null space vector is constructed by taking E~ = 0,6W = 0, c> = 0, hi = ET(IIsy),  and ET = -(l,  ..., 1 ) .  Let 
u4 denote this vector. Two other null space vectors are obtained in the following way. Fix i in (17) and set E ~ ,  E T ,  c’ = 0. 
For each i, consider solutions to the system of equations 

nb’$i+6b;p:/2=0, j =  I ,  ..., M .  (20) 

Let B denote the 2 x 2 matrix 

B =  [3] 
where nbg is row j. B is invertible so there exist 6bi and 6b; such that 

(23) 

we see that hi = (1,O) and 6b; as defined in (22)-(23) satisfy (17)for all i. Thus the vector with these components is in 
null(Ad). The same construction using hi = ~ ’ ( 0 ,  1)  yields another vector in the null space. Designate these two vectors 
Us and Ug. 



Now introduce I' : R2N'3Mf' --t RNM by 

and define hi = Tui, i = 1 , .  .. ,6. The hi are simply the star position components of the null vectors. h' and h2 correspond to 
a translation of the field, h3 corresponds to a dilation of the field, h4 is a rotation of the field, and h5 and h6 are quadratics 
in the u and v directions, respectively. So in general any two solutions of (19) with h and h' representing the star position 
components of the solutions are related as 

6 
h = h' + Clih', 

i= 1 

for some scalars ai. Let At denote the pseudoinverse Of Ad. Then the solution of the star position coordinates given by 

k = TAid (26) 

is of fundamental interest. This solution has no component in the span of {hi}'=1,...,6 and is useful for characterizing 
the stability properties of the GNAA method. The error multipliers on the star positions, once the null space has been 
removed, are quite favorable (near unity) for reasonable geometries. In many applications of GNAA it is also possible to 
ignore the contribution of h5 and h6. Conditions where this is possible include the cases where the field of regard is very 
small (much less than 1 degree), or when the reference stars are located on a thin annular disc about the center of the field. 
In this latter case the u5 and U6 are nearly indistinguishable from u1 and u2. 

The minimum number of stars and baseline orientations required to determine the star positions (modulo the null 
space) is fixed by the number of measurements, N * M ,  and the number of degrees of freedom (DOFs). We have fixed the 
baseline length for the M observations, so there are 2 M t  1 baseline DOFs, plus M metrology constant terms, to go along 
with the 2N - 6 (6 being the dimension of the null space) stellar DOFs. Thus the number of stars and baselines is set by 

N M 2 2 N t 3 M - 5 .  (27)  

This is solved using a minimum of N = 4 stars and M = 3 baselines. 

3.2. Astrometric Formulation 
Over a small field of regard (1")  the curvature of the sphere can be effectively ignored, and it suffices to model points on 
the sphere as lying in a plane. Given a set of N reference stars, si, we will assume their motion is restricted to such a plane 
and obeys a law of the form 

where t is time and vi is the proper motion vector. We will actually assume that vi represents an unknown proper motion, 
i.e. the residual between the true and a priori proper motion vectors. The target star, S T ,  has a similar evolution: 

S i ( ? )  =si (O)+vi t ,  (28)  

s T ( t )  = s ~ ( 0 )  + v ~ t + @ ( t ) .  (29)  

For the target star we will assume that VT is known; the objective is to identify @(t).  

estimates are derived from delay measurements has the form 
GNAA works in the following way. The standard model for the positions of the reference and target stars from which 

$ i ( t )  =&(O)+hi ( t ) ,  i =  1, ..., N ? T ( t )  = $ ~ ( O ) + t v ~ + h ~ ( t ) ,  (30) 

where ii(O),f~(O) are the estimates of the positions of the reference and target object at an initial time t = 0 determined 
from the first set ofmeasurements, and hi(t) are correction terms determined from measurements. (So hi(0) = 0. )  The hi 
can only be determined up to a translation, rotation, or scale factor. The latter ambiguity is due to the unknown absolute 
scale of the instrument. The GNAA principal (proved in the previous section) implies that there exists a transformation 

(31) 
4 t ) 7  

A ( t ) s  = K(t )  + E ( t ) S  + w(t)Es, 



such that 
si(t) - i i ( t )  =A(t)S;.(t) 

for all i = 1 ,  ..., N ,  T and for any set of estimates of the star positions taken at any time f 2 0. Here K is a two-vector, E 

and w are scalars, and E is the matrix 
E = [ :  ;'I. 

Now (32) also holds for t = 0, i.e. 
~ i ( 0 )  - f j ( O )  =A(O)fj(O). 

(33) 

(34) 
It is easy to see that the set of maps of the form (31) are closed under addition, so in particular A, = A(t) -A(O) is also of 
the form (31). With this in mind we compute using (32) and (34) 

si(t) - S i ( O )  = f i ( t )  -.?i(O) +A(t) i i ( t )  -A(O)fi(O) 
z= S^i(t) - .fi(O) +A,?i(O) 

after using ?( t )  = $(O) + hi( t )  and deleting terms of second order. Because the proper motion of the target star is very 
large, we will retain its second order contribution below to obtain 

sT( t )  - s ~ ( O )  =&(t)  -3~(0) +A,[fr(O) + ~ v T ] + ~ A ( O ) V T .  (37) 

The objective is to determine the left side of (37) above; this is the motion of the target star. On the right side above, 
the unknowns are the transformations A, and A(0). A(0) only contributes a linear term, while A, can be determined, in 
principle, from (36). However, an error will arise because Ar cannot be determined exactly from (36) since the model of 
the left side of the equation contains proper motion errors. 

3.3. Error Analysis. 
Introduce the 2N x 4 matrix X 

12x2 SI E ~ I  

12x2 S N  E ~ N  

and the 4 component parameter vector p that characterizes At via 

Ats = + pgs + p4Es. 

Then (36) can be written as 
t V  = f f X p ,  

where 

(39) 

Thus, p = Xt [tv - $1, where Xt denotes the pseudoinverse of X. But since there is no knowledge of the proper motions vi, 
the estimated transformation uses = - X t i  instead, and an error of t 6p  arises where 

6 p  = XtV. (42) 

Let A, denote the transformation in (39) using f i ,  and again consider (37). The last two terms on the right are the corrections 
to the position estimate differences using the transformations At and A(0).  However, the best we can do is use A,. The 
resulting error in the (change in) position of the target star, call it S s ~ ( t )  is, 

Ssr(t) = (A, -At)[iT(O) + ~ v T ]  f t A ( 0 ) v r .  (43) 



From (39), (42), and (43) we see that 

6 S ~ ( t )  = t  [$:I +t6p3[f~(O) + t V T ]  +tSp4E[&(O) + Z V T ]  +tA(O)v=. (44) 

Now, from (42) it evident that 6 p  is linear with time; hence the acceleration error a is given by the coefficients of the 
quadratic (in t )  terms above: 

Since VT and EVT are orthogonal with JEvTJ = J v T J ,  

a = 2[SP3VT fSp4EVTl. (45) 

Let T denote the period of observation. After performing a linear least squares fit to the displacement due to acceleration, 
t + cu2/2 over the period 0 5 t 5 T ,  the residual error, r ( t )  is the quadratic 

1 
6 r ( t )  = IvT)18ql{--T2+Tt-t2) (47) 

with a peak-to-peak displacement, 6, 
s = lvr11SqlT2/4. 

It remains to characterize Sq. Without loss of generality we may assume the origin of our coordinate system is the 
barycenter of the reference star positions, i.e. 

N 

E i i ( 0 )  = 0. (49) 
i= 1 

By linearity we then also have 
N 

E C & ( O )  = 0. 
i=l 

Since X has full rank, X t  = (XTX)-’XT.  Now define the 2 x 2 matrices, Si as 

si = [Si ESi]. (51) 

Note that X T X  is the 4 x 4 matrix 

X T X  = 

Thus. 



Expressions (47,48), (55) and (56) expose the relevant parameters of the peak-to-peak quadratic error. For example, if 
we assume that the proper motions { v i }  are zero mean independent random vectors with common variance c$, we find 
the mak-to-mak dimlacement is 

Hence, a l/v% improvement in the error is realized with increasing the number of reference stars, while a linear im- 
provement is obtained by increasing the separation of the reference stars. In general, without the statistical assumption, 
there is no advantage to using more stars. 

3.4. Example of False Acceleration 
Shao3 created the following example: the reference frame contains two stars, one at the origin, the other on the v-axis. 
They are moving with an apparent velocity of 1 milli-arcsec yr-' in opposite directions along the u-axis. Thus the 
reference frame has a non-zero angular momentum. The target star is located off to the side and moves with a velocity of 
1 arcsec yr-' in the v direction. In our formulation, this is expressed by 

With respect to barycentric reference star coordinates, we have 

Using these values in (48) and (56) together with a 5 year observation period, T = 5, leads to the displacement 

8 M 3.48pas. (61) 

4. SIMULATION 
We demonstrate the GNAA technique with the simulation of 55 Cnc (P=14.6 d) described here. The simulation shows 
that given a set of stars R with only a coarse a priori knowledge of their positions, the target star position can be measured 
with M 1 uas accuracy for extended periods of time. 

Based on the radial velocity measurements of the innermost planet around 55 CNC,4 the system is expected to have 
an astrometric reflex amplitude of 8 uas for the inner planet. While we have not simulated the second component (P=44.3 
d, a=0.24 AU'), it too is detectable by GNAA with an amplitude of M 4.5 uas. The outermost planet, with its 14-yr period 
and > 2 mas signal, is easily detectable (though only a fraction of the orbit is observed during the SIM lifetime), but 
only because the signal is >> the false acceleration due to frame rotation. The outer planet would be detected during the 
normal course of SIM narrow-angle observations -it is not a candidate for GNAA observations. However, the inner planet 
would NOT be detected. The nominal SIM narrow-angle observational scenario calls for FZ 10 visits/target/yr, compared 
to 25 orbits/yr for the inner planet. The second planet might be detected (8 orbits/yr) depending on the details of SIM 
scheduling. Without GNAA measurements, additional planets with signals of a few uas would be masked by the 'noise' 
from the unseen inner planets. 

The set of stars R was chosen over a 1" field-of-regard (FOR). The stars in R have an a priori positional knowledge 
of 100 mas. This could be easily obtained using ground based observations with a small telescope for stars not in the 
Hipparcos or Tycho catalogs. R is observed at 3 baseline orientations such that the baseline is rotated about the line of 
sight s in 60" steps. The 60" steps are assumed to be accurate to +/- 1O.5 as is the positioning of the baseline cant angle 
(out of the s x B plane). The baseline orientation is assumed to be known to 1 arcsec with information provided by star 



trackers, siderostat encoders, and coarse estimates of delay line position. Stars with V<10.5 are assumed so that the delay 
measurement noise is consistent with the SIM narrow angle error budget. 

A crucial assumption in this study is the regularization of B. Imperfect spacecraft attitude control allows the baseline 
to drift by up to M 1 arcsec. Regularization describes the process of estimating the mean value of B using information from 
the guide interferometers and knowledge of the baseline geometry (guide baselines relative to the science baseline). The 
accuracy of this assumption is well understood by the SIM science team and is consistent with narrow-angle observational 
requirements. This assumption is always assumed in the standard narrow angle scenario as well. 

At the microarcsecond level, the reference frame is deforming itself; the reference and target stars are moving linearly 
in random directions due to proper motion, and they are moving in functionally predictable trajectories due to parallax. 
The amplitude of the parallax is not known. Our simulation includes random (but linear in time) 10 mas/year motion per 
reference star, and 1 arcsec/year motion of the target star. Curvature (in particular for the target star) of the motion due 
to parallax is not included because the science program searches for known short period signals that are easily decoupled 
from the annual parallax. 

SIM’s metrology will occasionally break. In the conventional (grid-based) narrow angle approach, it is allowed to 
break with every =5 tiles; more frequent interruptions result in a poor absolute grid solution (the grid becomes too 
“elastic”). With GNAA, the internal metrology is allowed to break with every new baseline orientation (roughly every 
hour), resulting in a new c) term for each orientation in (17). But (17) also shows us that E,. is independent of j - that is, 
the baseline length error is fixed for the M baseline orientations. Thus, the external metrology must not break until the 3 
baseline orientations are complete, or x 3  hr. 

In summary the simulation includes the following effects: 

Initial knowledge error of reference frame and target star positions 100 mas rms (each axis) 
Baseline positioning accuracy 1”s rms 
Knowledge of baseline pointing 
Baseline absolute length knowledge 
Noise per delay measurement 
Constant term knowledge error 
Proper motion of stars 
Number of baseline orientations/2-D measurement: 
Number of reference stars 

1 arcsec rms (each axis) 
10 microns rms 
50 pm rms 
10 um rms 
10 mas/yr rms 
3 
5 

Extemal metrology break (baseline length measurement) 
Constant term metrology break 

every 3 hrs 
every hour 

The simulation shows that GNAA can measure changes in the position of the target relative to the reference frame at 
the micro-arcsecond level. Even for extended periods in which the reference frame deforms by 10 mas, the noise level 
remains x 1 micro-arcsecond. 

The astrometric precision depends upon the distribution of stars in the reference set, the accuracy of the a priori 
positions of the reference frame and baseline, and the noise level per measurement. However, simulations show that by 
far the most sensitive parameter is the delay noise per measurement (50 pm rms). When this is set to zero (no delay error), 
and all other parameters remain the same, the rms astrometric error is reduced to 0.23 uas. On the other hand, assuming 
perfect reference star knowledge and perfect baseline vector knowledge (but 50 pm rms noise) improves the precision 
from 1.0 to 0.95 uas. As the field size grows (in particular, the diameter of R’), sensitivity to baseline and reference star 
knowledge increases. 

5. FUTURE WORK 
The GNAA technique has been studied in some detail but much work remains. The GNAA process ultimately needs to 
be described in the same analytical framework as the SIM grid and standard narrow angle reductions. Noise propagation 
and parametric sensitivities will be studed. In doing this, one hopes to describe an optimized process that makes more 
efficient use of grid stars and precious narrow angle observing time. 

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration. 
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Figure 1. Fig. 1 .  a) is 55 Cnc and the surrounding field of reference stars. Only the nearest bright reference stars (shown) are used. b) 
shows the result of 30 daily observations of 55 CNC. Each day, the baseline is oriented to 3 positions rotated 60” about the line of sight 
to the target. For demonstration purposes, the 8 uas signal is assumed to be a pure North-South sine wave. The R.A. axis thus indicates 
the noise level. Given the simulation parameters described above and this particular set of reference stars, the astrometric precision is 
1 .O uas on each axis for each 3-baseline @-hour long) observation. The reference frame has deformed by up to 300 mas due to proper 
motions of the reference stars. The relative proper motion of the target star has been fitted and removed. 
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